4.1 Ringed Spaces

Definition 1. Let R be a ring. A *ringed space* is a pair (X, \mathcal{O}_X) where X is a topological space and \mathcal{O}_X is the sheaf of R-algebras on X.

Example 2. The following pairs are ringed spaces:

- (a) (X, \mathbb{Z}_X) where \mathbb{Z}_X is the constant sheaf on X. (for $R = \mathbb{Z}$)
- (b) $(X, \mathscr{C}^{\mathbb{R}})$ where X is an arbitrary topological space and $\mathscr{C}^{\mathbb{R}}$ is the sheaf of continious (\mathbb{R} -valued) functions on X. (for $R = \mathbb{R}$)
- (c) (X, \mathscr{C}^r) where X is an arbitrary banach space and \mathscr{C}^r is the sheaf of r-times continious differentiable functions (with values in \mathbb{R}). (for $R = \mathbb{R}$)

Definition 3. Let R be a ring, then a map $\Phi : (X, \mathcal{O}_X) \to (Y, \mathcal{O}_Y)$ is morphism of ringed spaces over R given by a continious map $\phi : X \to Y$ together with a ϕ -morphism of sheaves of R-algebras.

Proposition 4. Let (X, \mathcal{O}_X) and (Y, \mathcal{O}_Y) be ringed spaces. The map $\Phi : (X, \mathcal{O}_X) \to (Y, \mathcal{O}_Y)$ is an *isomorphism of ringed spaces (over R)*

- $\Leftrightarrow \Phi \text{ is invertible}$
- \Leftrightarrow The underlying cont. map $\phi: X \to Y$ is an homeomorphism and $\mathcal{O}_Y \to \phi_* \mathcal{O}_X$ is an isomorphism of sheaves of *R*-algebras.

4.2 Geometric Spaces and Manifolds

Definition 5. Let R be a ring. A ringed space (X, \mathcal{O}_X) (over R) is called a *geometric* space if and only if for all $x \in X$ the stalks $\mathcal{O}_{X,x}$ are local rings and the stalk maps $\Psi_x : \mathcal{O}_{Y,\phi(x)} \to \mathcal{O}_{X,x}$ are local morphisms of local rings. (i.e. $\Psi_x(m_{\phi(x)} \subset m_x)$)

Remark 6. Morphisms of geometric space are just morphisms of ringed spaces. Therefor we get a sub categorie $GeoSp \subset RSP$ of ringed spaces.

Seminar: Sheaf Theory, Ruprecht-Karls Universität Heidelberg

Example 7. The following pairs are geometric spaces:

- (a) $(Spec(R), \mathcal{O}_{Spec(R)})$ where R is a ring. Thus all affine schemes are geomtric spaces.
- (b) (X, \mathscr{C}^F) where R is a ring, F an R-algebra (which is a topological field), X a topological space and \mathscr{C}^F the sheaf of F-valued functions on X.
- (c) (X, \mathscr{C}^r) where $R = \mathbb{R}$, X a banach space and \mathscr{C}^r the sheaf of r-times differentiable, \mathbb{R} -valued functions on X.

Definition 8. Fix a ring R and suppose we have geometric space (M, \mathcal{O}_M) over R (to be regarded as a 'model'). We say that a geometric space (X, \mathcal{O}_X) is *locally isomorphic* to (M, \mathcal{O}_M) if and only if for all $x \in X$ exists an open neighbourhood $U \subset X$ of x and an open subset $V \subset M$ such that there exists an isomorphism $\varphi: (U, \mathcal{O}_X|_U) \to (V, \mathcal{O}_M|_V)$.

Given \mathcal{M} a class of model spaces (M, \mathcal{O}_M) we say that (X, \mathcal{O}_X) is a manifold of type \mathcal{M} (over R) if and only if there exists an open cover $(U_i)_{i \in I}$ of X such that for all i the restriction of the sheaf $\mathcal{O}_X|_{U_i}$ is isomorphic to a model space (M, \mathcal{O}_M) of \mathcal{M} .

Example 9. If the geometric space (X, \mathcal{O}_X) (over R) is a manifold of type:

- (a) $\mathcal{M} = \{(\mathbb{R}^n, \mathscr{C}^{\mathbb{R}}) | n \in \mathbb{N}\}\$ we obtain topological manifolds of dimension n. (for $R = \mathbb{R}$)
- (b) $\mathcal{M} = \{(\mathbb{R}^n, \mathscr{C}^r) | n \in \mathbb{N}\}\$ we obtain differential manifolds of class $r \in \mathbb{N}$ and dimension n. (for $R = \mathbb{R}$)
- (c) $\mathcal{M} = \{(\mathbb{C}, \mathscr{C}^w)\}$ we obtain Riemann surfaces. (for $R = \mathbb{C}$)
- (d) $\mathcal{M} = \{(\mathbb{C}^n, \mathscr{C}^w) | n \in \mathbb{N}\}$ we obtain complex analytic manifolds. (for $R = \mathbb{C}$)
- (e) $\mathcal{M} = \{affine \ schemes\}$ we obtain schemes. (for $R = \mathbb{Z}$)